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Abstract: 
The article deals with the question whether careers have indeed become more complex dur-
ing the last years and/or decades by applying methods stemming from chaos research. The 
movements of 215 business school graduates from two different cohorts (graduation around 
1970 and 1990 respectively) along two career-related dimensions (coupling, i.e. career-
related security, dependency, and number of job alternatives, and configuration, i.e. stability 
of work content and professional relations) are examined with regard to their complexity. The 
results show that the complexity of careers for the 1990s cohort is generally higher than for 
the 1970s cohort. Furthermore, the results obtained suggest that the career paths of both 
cohorts along the two dimensions mentioned above are not random but form a complex yet 
deterministic system. 
 
 
1 Introduction 
 
For quite some time, career research was almost exclusively limited to careers within organi-
zations (Becker & Strauss, 1956; Dyer, 1976; Glaser, 1968; Gunz, 1989; Hall, 1976; Hughes, 
1951; Schein, 1978; Super, 1957). However, a different type of careers is gradually gaining 
more and more theoretical as well as practical relevance. It is marked by numerous transitions 
between jobs, organizations, or fields of professional activity, as well as a lack of institution-
alized and "ordered" career paths and/or career rules. In addition, it is almost solely up to the 
individual actor to take care of his or her career, with little or no external support. The result-
ing less stable, less predictable career path is labeled, for instance, as "boundaryless career" 
(Arthur, Inkson, & Pringle, 1999; Arthur & Rousseau, 1996), "protean career" (Hall, 1996), 
"post-corporate career" (Peiperl & Baruch, 1997), or "chronic flexibility" (Mayrhofer et al., 
2000). Regardless of one’s enthusiasm for the idea of a radically changing career environ-
ment, common wisdom has it that careers nowadays are more erratic and diverse than they 
were several decades ago. In the following, we will term this claim of increased career com-
plexity as "complexity hypothesis in career research". 
 
Although most of these "new career" concepts appear valid and sound, empirical support for 
the complexity hypothesis is still rather scarce. Most empirical research so far is based on 
case studies, interviews, and anecdotes (e.g. Arthur et al., 1999; Arthur et al., 1996). Such 
approaches have great merit, especially when it comes to grasping the diverse and interwoven 
facets of these changes of the global career context that affect many different aspects of life. 
However, in order to add "quantitative" insight into the "new careers", we propose another 
way of investigating the complexity hypothesis in career research, applying quantitative 
methods from research domains that can be subsumed under the label of "chaos research" (cf. 
e.g. Haken, 1990; Prigogine, 1987). Although these methods have their origin in the sciences 
of nature, they have already been applied successfully to the social sciences (for an overview 
e.g. Mainzer, 1999; Tschacher, Schiepek, & Brunner, 1992). Chaos theory has already had its 
first appearances in career research, too (Baruch, 2002; Bird, Gunz, & Arthur, 2002; Chakra-
barti & Chakrabarti, 2002; Drodge, 2002; Gunz, Bird, & Arthur, 2002a; Gunz, Lichtenstein, 
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& Long, 2002b; Lichtenstein, Ogilvie, & Mendenhall, 2002; Parker & Arthur, 2002). But in 
spite of several bold attempts to bring chaos theory and career research together, one has to 
concede that a serious and methodically sound application of methods from chaos research to 
the social sciences is far from trivial (Sokal & Bricmont, 1998). Nonetheless, using these 
methods from chaos theory in career research should prove fruitful, especially when it comes 
to a description of career as a dynamic process. 
 
In the present paper, methods from chaos research are applied to a set of empirical data on 
actual career paths. We attempt to investigate whether careers have indeed become more com-
plex over the last few decades, as the complexity hypothesis in career research postulates. 
More precisely, the article deals with three questions: 
 

1. Complexity Hypothesis. Have careers indeed become more complex during 
the last years and/or decades? Aside from the evidence provided by the sources 
mentioned above (among others), we will examine this question within a 
mathematically formalized definition of complexity. 

2. Determinism vs. Haphazardness. Should careers be perceived as a complex 
yet deterministic system or a random process? Although both chaotic systems 
and random processes are complex, chaotic systems are deterministic and not 
random in their behavior. The difference is an important one, considering the 
limited value of theories and research attempts that would try to discover and 
explain the dynamics of a random process. 

3. The Appeal of Chaos Theory for Career Research. Two methods stemming 
from "chaos research" will be introduced and examined as to their suitability 
for the description and analysis of career paths. The main issue here is the 
transferability of these methods that have their origin in the sciences of nature 
to career research. 
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2 Complexity Hypothesis 
 
Based on Bourdieu’s capital, habitus and field concept (e.g. Bourdieu, 1986), Mayrhofer et al. 
(2000) suggested four different fields of careers resulting from an interplay of two dimen-
sions: coupling and configuration between actors (Figure 1). 
 

loose

tight

stable unstable

...  configuration

...  coupling

Company-World Free-Floating-
Professionalism

Self-Employment Chronic-Flexibility

 
Figure 1: The Fields of Career 

The coupling dimension focuses on the closeness of relationships and the degree of mutual 
influence between the focal actor and the other actor(s) in the field (e.g. Orton & Weick, 
1990; Staehle, 1991; Weick, 1976). Tight coupling means that the actors are closely inter-
twined in their decisions. On the other hand, loose coupling stands for a type of relationship 
where the decisions of one actor have very little consequences for the decisions of the other. 
Thus, in a tightly coupled relationship the decisions of one partner reduce the other’s degrees 
of freedom much more than in a loosely coupled relationship. 
 
The configuration dimension focuses on changes over time in the configuration of relation-
ships between the focal actor and other relevant actors. A stable configuration implies that 
neither the social environment nor the tasks of the focal actor change rapidly and frequently. 
Conversely, an unstable configuration means that there is a frequent change in the configura-
tion of actors and/or work-related tasks. This dimension refers rather to the rate of change in 
the configuration than to the number of actors relevant for the focal actor. Combining these 
two dimensions into a matrix results in a simple typology with four ideal types of careers that 
can be labeled as follows (see Mayrhofer et al., 2000): 
 
� Company World (CW) stands for the field of the traditional organizational career. It 

refers to the structure of jobs in an organization where there are few points of entry 
other than at the bottom. It is defined in terms of the two dimensions by tight cou-
pling and a stable configuration between an individual actor and other actors (in most 
cases represented by an employing company). 

� Free-Floating Professionalism (FFP) can be defined as the field of specialists. Indi-
viduals work closely with one customer, but only for a limited time, which results in 
tight coupling but an unstable configuration. 
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� Self Employment (SE) is the field of career with individuals working outside organi-
zations. Typically, these are either self-employed professionals or entrepreneurs, who 
work in a rather stable and limited field of expertise. This sort of occupation typically 
results in comparatively loose coupling between actors, but a stable configuration. 

� Chronic Flexibility (CF) may appear quite similar to Free-Floating Professionalism, 
since those careers are also characterized by frequent job changes. The fundamental 
difference lies in the disappearance of the boundaries of a domain of expertise. This 
means that changing from one job to another may imply not only a change from one 
organization to another, but also from one industry to another, from being employed 
to self-employment, and so on. These loosely coupled and unstable relations are the 
key definition of that field of career. 

 
Apart from these ideal types that shall rather serve as an illustration here, a tendency towards 
careers that are marked by more loosely coupled and unstable relationships between actors 
could be observed in recent years. The increasing number of part-time jobs, fixed-time con-
tracts, company layoffs as well as concepts such as life-long learning and employability are 
just a few examples of these developments (e.g. Reetz & Reitmann, 1990; IBW, 1997) (see 
Figure 2). 
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Figure 2: Assumed Development of Careers 

This tendency towards loose coupling and an unstable configuration already represents one 
concept of increased career complexity. Accordingly, the career of a person in an occupa-
tional situation marked by loose coupling and an unstable configuration (Chronic Flexibility) 
is more complex than the career of a person in a situation marked by tight coupling and a sta-
ble configuration (Company World). The perspective taken here, however, is a different one: 
we shall focus on complexity as a criterion regarding the movement of a person along the two 
dimensions of coupling and configuration. Therefore, complexity can also be attributed to a 
career that is limited to e.g. the Company World career field (see Figure 3 for a straight and 
non-complex career path, and Figure 4 for a highly complex one). 
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Figure 3: Linear, Straight Career Path Figure 4: Erratic, Complex Career Path 

So, instead of adopting a "static" perspective in order to examine whether careers have indeed 
become more complex during the last years and/or decades (e.g.: How has the relative distri-
bution of a sample of persons changed with regard to the four fields? Do people report a less 
stable configuration and looser coupling now than 30 years ago?), we will deal with this ques-
tion from a “dynamic” standpoint: If one perceives career paths as movements along these 
two dimensions, do the career paths of persons who graduated from a business school and 
entered professional life more than 30 years ago differ from those of persons who did so about 
12 years ago? 
 
The theoretical and methodological fundament for the following analyses will be drawn from 
the domain of chaos research, which includes a broad spectrum of theories, such as the theory 
of non-linear dynamic systems (e.g. Schuster, 1989a), synergetics (e.g. Haken, 1990) and the 
theory of dissipative structures (e.g. Prigogine, 1955, 1987). More precisely, we will employ 
two measurements of dynamic complexity stemming from this field of research that will be 
outlined in the following chapter: the concept of algorithmic entropy and the determination of 
fractal structures of so-called strange and/or chaotic attractors. 
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3 Definitions of a Dynamic's Complexity 
 
Theories on dynamical systems offer a broad spectrum of statistical and mathematical tools in 
order to obtain precise quantitative measurements of complexity, order, determinism, and 
chaoticity. Most of these algorithms have been developed in the last 20 years, frequently 
based on older precursors. In the following section, we will give a brief overview over two 
different methods. The first one is relatively easy to implement and can be applied for nomi-
nal data. The second represents a class of complexity measurements based on the concept of 
fractal geometry. In order to keep it short, details of algorithms are not presented here but can 
be found in the appendix of the paper. 
 

3.1 Complexity and Order in Sequences of Events 
One standard method to determine the complexity of a sequence of events or symbols is 
Shannon’s definition of the information content (Shannon, 1948). According to this defini-
tion, the information content of a sequence of values is equal to the sum (over all values) of 
the probability of the appearance of one value, multiplied with the logarithm of this probabil-
ity: 

Equation 1: ∑
=

−=
N

i
iis sPsPI

1
2 ).(log)(  

The information content of a person’s career movements (within the theoretical framework 
outlined above) could therefore be determined by putting a grid over the career path in ques-
tion and recording the boxes the person is located in during his or her career. Figure 5 shows 
the linear career path already presented in Figure 3 with such a grid. 
 
 

 

1 
 
 
1 2 3    

4 5 6    

7 8 9    
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Figure 5: Career Path of a Person as Movement Over a Grid 

Assuming a uniform movement towards the "upper left corner" and the recording of 16 sam-
pling points, the resulting sequence of "visited boxes" would look somewhat like the follow-
ing (a "box" may appear more than once as the person stays in that "box" during several 
years): 
 

9 → 9 → 9 → 9 → 8 → 8 → 5 → 5 →5 →5 →5 → 5 → 4 → 4 → 1→ 1 
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The information content of this sequence of events can now quite easily be calculated accord-
ing to Equation 1 and amounts to 2.35 bit for the presented example. Although Shannon’s 
definition of the information content is one of the most widely used calculations for a se-
quence of values, it has some serious shortcomings, one of the most important lying in the 
fact that any sequence containing the same symbols as the example presented above yields the 
same result of 2.35 bit, such as the following one which would however imply a more com-
plex career pattern: 
 

9 → 1 → 9 → 5 → 9 → 5 → 8 → 5 → 8 → 5 → 9 → 4 → 5 → 5 → 4 → 1 
 
We therefore face the question of how the idea of information content can be extended to tak-
ing the dynamic order of a career path into account. One solution proposed for this problem is 
the so-called algorithmic entropy. The fundamentals of algorithmic entropy are based on work 
in the field of algorithmic information theory (Chaitin, 1974; Kolmogorov, 1965; Zvonkin & 
Levin, 1970), which determines the information content of a sequence of values by the infor-
mation content necessary to completely describe the sequence. The square root of two, for 
example, is a number with infinitely many decimals that produce an extremely complex se-
quence of digits. Nonetheless the square root of two can be calculated using a quite simple 
algorithm: 

Equation 2: 







+== +

n
nn x

axxa
2
1

1 , n = 0, 1, 2, 3, … ∞ 

 
In order to calculate the square root of a, an arbitrary x is assumed as the correct result 
in a first step. Entering both a and x into the equation yields a new x that is again en-
tered into the equation, and so on. For a large n, the value of x converges towards the 
square root of a. 

 
Algorithmic information theory is based on these ideas, assuming that a rather simple algo-
rithm is able to describe and/or produce complex (but still ordered!) structures. Put in a 
somewhat simplifying way, the algorithmic entropy of a sequence is defined by the minimum 
length of an algorithm that can (re)produce the original sequence. Sequences that show pat-
terns of ordered complexity can normally be put down to simpler algorithms, but in the case 
of a random sequence, the necessary algorithm is just as complex as the sequence itself, and 
maximum algorithmic entropy is attained (Hubermann & Hogg, 1986). One of the easiest 
ways to calculate measurements on algorithmic entropy is to use a data compression algo-
rithm (similar to file compression used on computers) on to the data. While it is not possible 
to compress random data very much, it is possible to distinguish random time series from or-
dered ones. We used a compression algorithm called Grammar Complexity (Ebeling & Jimé-
nez-Montano, 1980; Jiménez-Montano, 1984; Rapp, Jiménez-Montano, Langs, Thomson, & 
Mees, 1991). As a data set arranged by size leads to the best compression, and a randomly 
shuffled data set results in less compression, the algorithmic entropy of a person's career path 
is supposed to be in the middle. According to our hypothesis a person's career path is more 
complex then a totally ordered path but far from being random. If the assumption that careers 
have become more complex over the last decades holds true, the algorithmic entropy of ca-
reers that have begun more than 30 years ago should be lower (i.e., those careers should be 
more ordered) than the algorithmic entropy of careers that have begun about 20 years later. 
 
Procedures for calculating algorithmic entropy are not very sensitive with regard to the sam-
ple data. A nominal sequence of symbols or values is sufficient. However, this may entail a 
loss of information for sample data that feature a higher level of measurement. Within the 
framework of theories of non-linear dynamic systems, several methods have been proposed 
that allow to examine the complexity of an interval scaled sequence. 
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3.2 Ordered Complexity from Fractal Dimension 
The best-known term within the theories of non-linear dynamic systems, which has also be-
come quite common in popular science, is probably the concept of chaos. Chaos (in the sense 
of non-linear dynamics) denotes extremely complex dynamic processes that can only be fore-
cast for a very limited period of time ("butterfly effect”; e.g. Lorenz, 1963), but that are not 
random either. As such hardly predictable processes can be found within deterministic sys-
tems, chaos – unlike random – always has a certain degree of order. 
 
An important feature of chaotic motion is their fractal structure (Ruelle & Takens, 1971) 
visualized in a phase space portrait. The term "phase space" stands for a coordinate system 
where the variables that affect the system form the coordinate axes. The career paths shown in 
Figures 3 and 4 are examples of simple phase space representations. The changes in coupling 
and configuration are not depicted as time series but plotted along the two axes. Following the 
trajectory represents the development over time. Figure 6 shows the three-dimensional phase 
space of the chaotic weather system, first described by Lorenz (1963). The structure of the 
chaotic motion shows a highly ordered but complex geometrical form, known as a fractal. 
 

 

Figure 1: Phase Space Portrait of the Chaotic Lorenz-System (Weather-Model) 

The concept of fractals was introduced by Benoît B. Mandelbrot to designate geometrical 
forms that differ from classic Euclidian forms (such as circles, squares, triangles, cubes etc.) 
insofar as they show an irregularity that cannot be described by common mathematical meth-
ods. Mandelbrot (Mandelbrot, 1987) categorically denies the possibility to determine the 
length of a fractal line or the area of a fractal surface. Nonetheless there are possibilities to 
describe fractals mathematically, by examining their structural complexity. The basics of such 
a method were already formulated early in the 20th century by mathematicians like Hausdorff 
and Besicovitch (Besicovitch & Ursell, 1937; Hausdorff, 1919). The description of a fractal's 
complexity is based on concepts of a body's dimensions. 
 
Chaotic attractors in phase space are also fractal structures. If it can be shown that a phase 
space structure based on empirical data is a fractal, this would suggest that the underlying 
system is a chaotic one. Several methods have been proposed to determine the fractal dimen-
sion of a time series. The most common one that is also used here is the Correlation Dimen-

x 

z 

y 
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sion D2 (Grassberger & Procaccia, 1983a, b). What all these methods have in common is that 
they theoretically require an infinitely long time series for a reliable calculation. Even though 
about 1.000 sampling points are generally regarded as a small yet sufficient number for attrac-
tors of a low fractal dimension (for a controversial discussion about this topic see Tsonis, 
1992), this is still a hard requirement for behavioral science. 
 
Since the work of Grassberger and Procaccia (1983a; 1983b) a lot of publications has shown 
the fractal structure of a broad variety of processes. But not all of them are actually chaotic. 
The calculation of fractal dimension still leaves some methodological problems, since it is an 
appropriate method of calculating the complexity of a time series, but not for the detection of 
chaos (e.g., due to the limited length of the time series). Nevertheless, a successful determina-
tion of the fractal dimension of a dynamic process allows to draw the following conclusions: 
 

1. Measuring Complexity. The higher the fractal dimension of a dynamic proc-
ess, the higher its complexity 

2. Determinism vs. Haphazardness. If the fractal dimension of a dynamic proc-
ess derived from empirical data can be determined, the process in question is 
not a random process. 

3. Calculation of the System's Degrees of Freedom. The fractal dimension 
rounded up to the next integer number specifies the minimum number of inde-
pendent but interacting factors the system needs to generate its dynamics 

 
Several authors in career research have recently advanced conjectures according to which 
careers can be viewed as chaotic processes (cf. Bird et al., 2002; Chakrabarti et al., 2002; 
Drodge, 2002; Gunz et al., 2002a; Gunz et al., 2002b; Lichtenstein et al., 2002; Parker et al., 
2002). Assuming that the dynamics of careers are influenced by more than three influencing 
variables and that the relationship between these variables is not a linear one (either a premise 
for chaotic systems; cf. Schiepek & Strunk, 1994), career paths could indeed be chaotic proc-
esses. In that case, however, the factors that influence careers would indeed have to form a 
system, and careers ought not to be determined by random influencing factors. If phase space 
representations of career paths similar to those shown in Figures 3 and 4 turn out to have a 
fractal structure, this would at least imply that these career paths are not completely deter-
mined by random factors. Furthermore, the fractal structure of careers that have begun more 
than 30 years ago should be less complex than that of careers that have begun 20 years later. 
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4 Methods 
 
Since 2000, the Vienna Career Panel Project (ViCaPP) has collected data on the careers of 
Austrian business school graduates. The analyses are based on the first 13 career years of 95 
graduates who completed their studies around 1970 and 120 graduates who did so around 
1990. Based on a curriculum-vitae-like list of professional activities for each person, their 
professional development was charted for each year since their graduation along several vari-
ables with a sampling frequency of one year. Figure 9 gives a graphic representation of the 
research design. For the 90s cohort (sample B), data are available for a period of 13 years. In 
order to make results comparable, the first 13 working years are also chosen for the 70s co-
hort (sample A). Sample C contains the last 13 career years for the 70s cohort, allowing us to 
compare the career paths of the two cohorts in identical calendar years. 
 

1968 1981 1988 2002

70s Cohort (A) first 13 years of career (C) last 13 years of career

90s Cohort (B) first 13 years of career

Measurements for (A), (B), (C):

Two measurements of Grammar Complexity for five items

Correlation Dimension

Hypotheses:

Grammar Complexity indicates: (B) is more complex than (A)
Correlation Dimension indicates: (B) has a higher Dimension than (A)

(C) helps with interpretation  
Figure 9: Design of the Study 

The following analyses are based on five time-series per person, representing her/his career 
patterns in time. Based on Mayrhofer et al. (2000), three of the five variables are related to the 
coupling dimension (how tightly linked and mutually dependent actors are in their career-
related actions and decisions) of career field theory. Coupling was operationalized by the fol-
lowing three items: 
 
� Security and calculability of career-related prospects (very secure vs. very precari-

ous). 

� Subjection of career-related prospects to specific external actors and/or constraints 
(very dependent vs. completely independent). 

� How easily another adequate job could be found should the need arise (very easily 
vs. not at all). 

The other two time series refer to instability and variation in actors' professional relationships 
and job content. This concept is also based on Mayrhofer et al. (2000) and is called the con-
figuration dimension. Configuration was represented by the following two items: 
 
� Stability of work content (very stable vs. ever-changing) 

� Stability of professional relations (very stable vs. ever-changing) 

A factor analysis results in a two-factor solution (as proposed by the underlying theory), 
which explains about 60% of the total variance. 
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4.1 Sample Description 
Structural differences between the two cohorts are not very pronounced. If one examines the 
first 13 career years, the proportions of self-employed persons vs. salaried employees are 
quite similar for both cohorts. About 67% of the 90s cohort have never been self-employed 
during their first 13 years of professional experience, while the respective proportion for the 
70s cohort is about 78%. Although the difference of 11% seems considerable at first sight, it 
is not statistically significant (Fisher test: p (two-tailed) = 0.1033). Those persons that claimed 
to have been self-employed during the first 13 years of their career have mostly done so only 
for a limited time. In both cohorts, about 17 % of the interviewed persons were self-employed 
for more than four years. 
 
The differences regarding gender were more conspicuous. Women are quite underrepresented 
in the 70s cohort compared to the 90s cohort, with a proportion of 14% and 42%, respec-
tively. This is because fewer women commenced and finished their studies at the Vienna 
University of Economics and Business Administration in the 70s. In the years 1972/73, the 
proportion of female graduates was 16%, compared to 39% in 1989/90. 
 
Mean age was 37.1 years (± 2.0 years) for the women and 37.9 years (± 3.8 years) for the men 
in the 90s cohort, and 55.6 years (± 2.1 years) for the women and 57.4 years (± 3.2 years) for 
the men in the 70s cohort. 
 

4.2 Calculations 
Both definitions of ordered complexity of dynamical processes are used here for investigating 
the questions already mentioned above: First, we will focus on the "complexity hypothesis" in 
career research; second, we will test the underlying deterministic structure of career paths. 
 
In order to determine algorithmic entropy, the Grammar Complexity procedure (measurement 
of the length of a compressed time series; see the appendix for details) was used. For the first 
13 career years of both cohorts (samples A and B) and for the last 13 years for the 70s cohort 
(sample C), the five items referring to coupling and configuration were used as time series, 
and the following calculations were executed for each person and each item: 
 

1. Measuring Complexity. The Quotient of the Grammar Complexity of the 
original time series divided by the Grammar Complexity of the sorted time se-
ries is a measurement for complexity. The larger the quotient, the higher the 
complexity. 

2. Determinism vs. Randomness. The Z-Transformation of the Grammar Com-
plexity values of the original time series via the means and standard deviations 
of 200 randomly shuffled surrogates (see the appendix for details) is a meas-
urement of determinism. Z-values that are larger than 1.96 imply that the origi-
nal time series is significantly more ordered than the random sequences of the 
surrogates. 

 
In order to test the differences between the three samples, the sample means for both meas-
urements were compared via T-tests. 
 
In contrast to Grammar Complexity, Correlation Dimension makes use of the additional in-
formation provided by interval scaled data (see the appendix for details), compared to nomi-
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nal symbol sequences. However, it has stricter standards concerning the required length of the 
examined time series, which also depends on its complexity. While several hundred sampling 
points are sufficient for moderately complex time series, highly complex systems require sev-
eral thousand sampling points for this method to be applied. Therefore, the determination of 
the fractal dimension of the data shall be executed via a somewhat unorthodox procedure: the 
time series of all persons in each cohort are put together. This results in quasi-time series with 
1.235 sampling points for the 70s cohort (95 members), and 1.560 sampling points for the 90s 
cohort (120 members). In order to simplify the calculation, not the five original time series 
but the two underlying dimensions (coupling and configuration) are used as sources for the 
quasi-time series, by taking the means of the two and three items assigned to configuration 
and coupling, respectively. 
 
Putting the data of all persons together is only a methodically sound procedure if the dynam-
ics of the individual career paths are not too distinct from each other. However, this cannot be 
examined at the outset, therefore 100 different variants of the time series for each of the two 
cohorts were generated and calculated separately. Additionally, if the individual time series 
that are used to form one of sufficient length really do differ very much from each other, the 
generated "overall" time series should be identified as a random process and fill the whole 
phase space, therefore showing no fractal structure. Therefore, Correlation Dimension allows 
differentiating between deterministic and random processes, too. If the calculation of a finite 
Correlation Dimension is possible, the underlying processes are ordered temporal patterns. On 
the other hand, if the Correlation Dimension value becomes infinite, the processes in question 
are just random. 
 
The algorithms for calculating Grammar Complexity and Correlation Dimension were both 
implemented by the first author in C++ and tested extensively on various known time series. 
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5 Results 
5.1 Algorithmic Entropy 
The results of the calculations of algorithmic entropy suggest that career paths are indeed 
more complex for the 90s cohort than for the 70s cohort. However, these results should be 
accepted with caution, as the test power of the method employed here is rather poor due to the 
extremely short sequences consisting of merely 13 values, and the nominal data. 
 
The first indicator for complexity (quotient of the Grammar Complexity value of the original 
time series divided by the Grammar Complexity value of the same time series sorted in as-
cending order) for the two cohorts is presented in Figure 10 and Table 1. 
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Figure 10: Grammar Complexity Quotient for the Two Cohorts and Observed Periods 

It is apparent that the values scarcely exceed the theoretical minimum of 1, which is largely 
due to the limited sensitivity of this method in the case of short symbol sequences (cf. Rapp et 
al., 1991). Despite all these limitations, the 90s cohort has higher complexity values on all 
five scales, both when compared to the first and last 13 working years of the 70s cohort. For 
the comparison of the first 13 career years of both cohorts, all observed differences but one 
(stability of work content) are statistically significant. 
 
Both aspects just mentioned – the limited sensitivity of the method employed for short time 
series as well as the nevertheless higher complexity values for the 90s cohort – are also re-
flected in the results for the second indicator, based on the test of surrogate sequences already 
outlined above, where the Grammar Complexity value for the original sequence is compared 
to a distribution of Grammar Complexity values for 200 randomized surrogate sequences 
(consisting of the same elements). The results presented in Figure 11 and Table 2 show the 
mean of the z-transformed Grammar Complexity values for both cohorts. The higher the 
value, the more ordered the underlying sequence, compared to a random sequence. Addition-
ally, z-values larger than 1.96 indicate that the observed sequence is significantly more or-
dered than a random sequence. It is apparent that the results for both cohorts fall short of this 
value. 
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Straight vs. Complex  70s Cohort 90s Cohort 

Dimension Sample Mean Standard 
Deviation N Mean Standard 

Deviation N T-Test 
(1-tailed) 

Coupling    95   120  
First  
13 years 1.0130 0.0391 1.0289 0.0721  * 

Career security and calculability Last  
13 years 1.0109 0.0397 last 13 years 70s vs. first 13 

years 90s * 
First  
13 years 1.0086 0.0344 1.0197 0.0552  * Subjection to specific external 

actors and/or constraints Last  
13 years 1.0174 0.0517 last 13 years 70s vs. first 13 

years 90s ns 
First  
13 years 1.0053 0.0270 1.0157 0.0518  * Ease with which another adequate 

job could be found Last  
13 years 1.0042 0.0197 

 

last 13 years 70s vs. first 13 
years 90s * 

Configuration    95   120  
First  
13 years 1.0104 0.0418 1.0132 0.0485  ns 

Stability of work content Last  
13 years 1.0033 0.0211 last 13 years 70s vs. first 13 

years 90s * 
First  
13 years 1.0105 0.0413 1.0227 0.0595  * 

Stability of professional relations Last  
13 years 1.0135 0.0425 

 

last 13 years 70s vs. first 13 
years 90s ns 

*  p < 0.05 
**  p < 0.01  

Table 1: Comparison of the Grammar Complexity Quotients 
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Figure 11: Mean Grammar Complexity Values after Z-Transformation for Both Cohorts 

Overall, the first indicator suggests that the observed career paths are at least a bit more com-
plex than their "most ordered" variant, while the second indicator implies that the complexity 
found in these career paths does not clearly distinguish them from a random process. Al-
though both indicators are basically in accordance with the "complexity hypothesis in career 
research", they both yield rather dissatisfactory results. On the one hand, the observed se-
quences only show a very limited complexity, on the other hand this limited complexity is not 
clearly distinct from a random process. Both these aspects reflect the very limited testing 
power of this method, with an extremely high β-error for short time series. With only 13 sam-
pling points, it is almost impossible to clearly differentiate the original sequence from random 
and/or complete order (cf. Rapp et al., 1991) – even when comparing the ordered sequences to 
the random surrogates, clear differences scarcely appear for the given data. It can therefore 
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not be clearly decided on the basis of the results for algorithmic entropy whether the observed 
career paths do indeed follow a pattern of ordered complexity, determined rather by a com-
plex yet deterministic system than by random biographic events. On the other hand, the ob-
served differences between the two cohorts regarding the complexity of their career paths do 
indeed support our predictions. 
 
 

Random vs. Order  70s Cohort 90s Cohort 

Dimension Sample Mean Standard 
Deviation N Mean Standard 

Deviation N T-Test 
(1-tailed) 

Coupling    95   120  
First  
13 years 0.6575 0.9895 0.3136 1.0791  ** 

Career security and calculability Last  
13 years 0.4784 0.8535 last 13 years 70s vs. first 13 

years 90s ns 
First  
13 years 0.7826 1.0212 0.3745 0.9646  ** Subjection to specific external 

actors and/or constraints Last  
13 years 0.4618 0.8445 last 13 years 70s vs. first 13 

years 90s ns 
First  
13 years 0.5068 0.7862 0.2722 0.9853  * Ease with which another adequate 

job could be found Last  
13 years 0.6417 0.9409 

 

last 13 years 70s vs. first 13 
years 90s ** 

Configuration    95   120  
First  
13 years 0.6295 0.9946 0.5366 1.1797  ns 

Stability of work content Last  
13 years 0.4964 0.9305 last 13 years 70s vs. first 13 

years 90s ns 
First  
13 years 0.5936 0.9301 0.2581 1.0540  ** 

Stability of professional relations Last  
13 years 0.5165 0.9087 

 

last 13 years 70s vs. first 13 
years 90s * 

*  p < 0.05 
**  p < 0.01  

Table 2: Comparison of the Mean Grammar Complexity Values after Z-Transformation for 
the Cohorts 

 

5.2 Correlation Dimension 
Contrary to Grammar Complexity, Correlation Dimension makes use of the additional infor-
mation provided by interval scaled data, compared to nominal symbol sequences. However, it 
has stricter standards concerning the required length of the examined time series, which also 
depends on its complexity. One crucial feature of this method is the distinction between a 
chaotic and a random process – the latter can be clearly identified by an infinite fractal dimen-
sion. Accordingly, a finite fractal dimension for the quasi-time series (in different orders) 
would imply that the time series are deterministic (and that the process dynamics for the sin-
gle persons are quite similar). 
 
Figure 11 shows the two-dimensional phase space portraits for randomly chosen variants of 
quasi-time series for the three samples. As was already found for empirical data in social sci-
ences, but also in medicine (e.g. Schiepek et al., 1997), no clearly structured figures could be 
observed, as opposed to mathematically generated time series (see Figure 8 as an example). 
 
While a simple order structure cannot be identified with the naked eye, the phase space em-
bedding for the 90s cohort appears more complex than that for the 70s. This may (partly) be 
due to the fact that more points were available from the quasi-time series for the 90s cohort 
than from the first and last 13 working years of the 70s cohort (1.560 vs. 1.235 points). Exam-
ining the results for the 70s cohort only, it is also apparent that the representation for the last 
13 years looks less complex than for the first 13 years, with the number of points being equal 
for these two quasi-time series. 
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Figure 11: Two-Dimensional Phase Space Portrait of Career Paths 

The calculations of the respective Correlation Dimensions confirm this impression. As Table 
3 shows, a finite D2 value could be attained for almost all variants of the three quasi-time 
series. For the first 13 years of the 70s cohort, only six variants out of 100 failed to saturate on 
a finite value. For the 90s cohort, the respective number was twelve. For the last 13 years of 
the 70s cohort, all 100 variants reached a finite D2 value. 
 
 

 70s Cohort 90s Cohort 

Sample Mean D2 Standard 
Deviation 

Valide N 
(total N = 100) Mean Standard 

Deviation 
Valide N 

(total N = 100) 
T-Test 

(1-tailed) 
First  
13 years 3.4004 0.2923 94 4.4611 0.3906 88 ** 

Last  
13 years 3.1070 0.2360 100 last 13 years 70s vs. first 13 years 90s ** 

*  p < 0.05 
**  p < 0.01  
Table 3: Correlation Dimension (D2) for the Three Samples 

The small number of variants of the quasi-time series that did not attain a finite D2 value is 
quite astonishing. Much more clearly than expected, these results suggest that the career paths 
represented by the quasi-time series are not random processes. Rather, the results imply that 
career paths are complex, dynamic structures that can be put down to deterministic processes. 
Furthermore, there are only marginal differences between the results for the 100 different cal-
culations which rarely exceed the error margin. 
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Figure 12: Mean Correlation Dimension (D2) for the Three Samples 

The D2 value for the 90s cohort is higher by about one dimension than that of the 70s cohort 
(see Figure 12 and Table 3). Consequently, while at least four interacting variables of a de-
terministic system are necessary to describe the career paths of the 70s cohort, the respective 
number for the 90s cohort is five. In addition, it is apparent that the system formed by the last 
13 working years of the 70s cohort is less complex than the system formed by their first 13 
years. This difference is much smaller however than that between the cohorts. 
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6 Discussion 
As outlined in the introduction, the present article dealt with three questions. First, it should 
examine whether careers have indeed become more complex during the last years ("complex-
ity hypothesis in career research") via a mathematically formalized concept of complexity 
stemming from chaos theory. The second question was whether the results obtained would 
support the concept of careers as a complex yet deterministic system or rather the view of 
careers as a random process. The third question aimed at investigating whether the methods 
applied here are appropriate for career research. The results obtained shall now be discussed 
in a bit more detail. 

6.1 Complexity Hypothesis 
In view of the fact that the available data hardly met the standards normally required for the 
application of chaos research methods, the results are surprisingly clear and significant. Both 
methods employed suggest that the career paths of persons who started their professional ca-
reer in the 90s are more complex than for persons who graduated around 1970, and the results 
were even more conspicuous for the more complex and demanding method of Correlation 
Dimension than for Grammar Complexity, although the latter seemed more appropriate for 
the given data at the outset. Nevertheless, there are several limitations to our study that should 
be taken into account: 
 
The data used here came from questionnaire-based interviews where the interviewees were 
asked to assess their whole careers retrospectively. It seems plausible that this task is more 
difficult for a person with more than 30 years of professional experience than for someone 
who started his or her professional career around 12 years ago. Therefore, the difference in 
observed complexity may partly be a consequence of the "mellowing" effect of time on career 
recollections. On the other hand, the last 13 career years of the 70s cohort (which are just as 
"recent" as the working years experienced hitherto by the 90s cohort), show an even lower 
degree of complexity than the first 13 years (which in turn could be due to a reduction of ca-
reer complexity in later career stages). In order to better understand and explore these issues, 
the Vienna Career Panel Project attempts to establish a panel of business graduates that will 
be asked to participate in a survey of their professional development in fixed intervals. 

6.2 Complex or Random? 
The methods for identifying a deterministic system and distinguishing it from a random proc-
ess are still slightly embryonic. Only rather simple processes with limited complexity can 
already be identified as deterministic systems. The attempt to reveal these career paths as 
complex yet deterministic systems via Grammar Complexity did not yield a successful result, 
which is probably due to the very limited testing power of this method for short time series. 
The fact that a finite D2 value was attained for almost all variants of all quasi-time series sug-
gests that the observed career paths are based on a rather simple system, despite all complex-
ity. In any case, the results obtained say nothing about the complexity of the individual career 
paths. 

6.3 Appropriateness of these Methods for Career Research 
The approaches introduced here are just a small fraction of the methods, tools and algorithms 
currently used and discussed in chaos research. We believe that a more widespread use of 
methods stemming from chaos research faces two main obstacles. First, the data collected 
within career research will in many cases not meet the standards that are required to success-
fully apply methods of chaos research. For example, we did not attempt to demonstrate here 
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that the observed career paths are chaotic processes in a mathematical sense, as this would 
have to be done via the calculation of Lyapunov exponents (Lyapunov exponents are a proof 
for the butterfly effect; cf. Rosenstein, Collins, & De Luca, 1993; Wolf, Swift, Swinney, & 
Vastano, 1985), which cannot be done with the available data. Second, the methods employed 
here are far less widely-used than "standard" statistical procedures, which is also reflected in a 
lack of computer software that can perform this sort of calculations. Despite all these short-
comings, we think that this article represents a successful application of methods from chaos 
research to career-related questions. Furthermore, we believe that the merit of this paper and 
the concepts and methods contained therein lies less in the results as such, but rather in the 
fact of having introduced a theory that is able to describe and quantify career dynamics in a 
precise and methodically sound way. 
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7 Appendix 
 
In the following sections, we will introduce the statistical algorithms used in this paper a bit 
more extensively. For more details, please refer to the cited literature. 
 

7.1 Grammar Complexity 
The Grammar Complexity algorithm (Ebeling et al., 1980; Jiménez-Montano, 1984; Rapp et 
al., 1991) can probably be most easily explained via an example, which is why we turn once 
more to the career path of our virtual person shown in Figure 5. Writing down the indices of 
the boxes the person enters and/or crosses during his or her career path results in the sequence 
of numbers already seen above, which shall be called x: 
 
 x = 9 9 9 9 8 8 5 5 5 5 5 5 4 4 1 1 
 
The algorithm now looks for pairs of symbols that repeat themselves in the sequence more 
than twice1 and replaces these by another symbol, the meaning of which is entered into a 
"symbol registry". When there are no pairs left that appear more than twice, the algorithm 
looks for triples, then for quadruples, and so on. When no more replacement is possible, the 
algorithm stops. 
 
For the given sequence, the string (9 9) appears twice, which doesn’t make it eligible for 
compression (see footnote 1). The string (5 5), however, appears three times and is therefore 
replaced by another symbol a, which is entered into the symbol registry: 
 
 x = 9 9 9 9 8 8 a a a 4 4 1 1 
 a = 5 5 
 
As there are no more pairs that appear more than twice in the sequence, the algorithm now 
looks for triples. For the given sequence, there is no triple that appears more than once, nei-
ther is there a tuple of a higher order, so the algorithm stops here. 
 
To further simplify the notation of the sequence, recurring symbols can be written down in 
"power notation", e.g. (a a a) can be written as a3: 
 
 x = 94 82 a3 42 12 
 a = 52 

 
The Grammar Complexity can now be computed by summing up the number of all remaining 
symbols (including those in the symbol registry) and the absolute values of the logarithms to 
the base two of all used powers. For our sample sequence, the calculation looks as follows: 
 

Grammar Complexity = 5 + |log24| +  |log22| + |log23| + |log22| + |log22| + 1 + |log22| = 13.59

"x" term "a" term  
 
                                                 
1 If a pair of symbols appears only twice, no compression is possible since each of the two pairs would be repre-
sented by another symbol (two symbols overall so far), and the replacing symbol would be represented by the 
two values, which adds another two symbols to the algorithm, resulting in the same number of symbols (four) as 
at the beginning. This restriction does not apply to triples, quadruples etc. which are already replaced on their 
second appearance. 
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In order to better interpret the results, two procedures can be employed. One consists in rear-
ranging the sequence from smallest to largest value and calculating the Grammar Complexity 
for the sorted sequence. In our case, this ordered sequence looks as follows: 
 
 x' = 1 1 4 4 5 5 5 5 5 5 8 8 9 9 9 9 
 
Calculating the Grammar Complexity for this sequence yields the same result of 13.59, sug-
gesting that the original sequence x is a highly ordered one – a result that is in accordance 
with the depiction of the career path in Figure 5. 
 
Another way of interpreting results was proposed by Tschacher and Scheier (1995). They 
examined data via a surrogate data procedure, generating many surrogate sequences that con-
sisted of the same elements as the original sequence (randomly shuffled in many different 
ways) and calculating the Grammar Complexity for these surrogate sequences. The obtained 
values are normally distributed, allowing to examine whether the Grammar Complexity of the 
original sequence differs significantly from that of the randomly shuffled surrogate sequences. 
 
Unlike Shannon's algorithm presented above (see Equation 1), the Grammar Complexity algo-
rithm does differentiate between ordered and less ordered structures. Taking the randomly 
arranged sequence already shown above in connection with Shannon's information content 
formula: 
 

9 → 1 → 9 → 5 → 9 → 5 → 8 → 5 → 8 → 5 → 9 → 4 → 5 → 5 → 4 → 1 
 
calculation of the Grammar Complexity for this sequence yields a result of 16, suggesting that 
this sequence has a higher degree of complexity. The Grammar Complexity procedure has 
already been employed successfully in social sciences to determine the complexity of a nomi-
nal sequence of values (Friedlmayer, Reznicek, & Strunk, 1996; Rapp et al., 1991; Thiele, 
1997; Tschacher et al., 1995). Its shortcomings are that both the length of the examined se-
quence and its distribution of values influence the results produced by this algorithm. 
 
Along with Grammar Complexity, other algorithms have been proposed that are also based on 
methods of data compression (for a comparative overview, see e.g. Schürmann & Grassber-
ger, 1996). 
 
 

7.2 Correlation Dimension 
An important feature of chaotic motions in phase space is their fractal structure. The concept 
of fractals was introduced by Benoît B. Mandelbrot (e.g. 1987) to designate geometrical 
forms that differ from classic Euclidian forms (such as circles, squares, triangles, cubes etc.) 
insofar as they show an irregularity that cannot be described by common mathematical meth-
ods. The description of a fractal's complexity is based on concepts of a body's dimensions. 
 
The following example shall illustrate the concept of measuring the dimensionality of 
"Euclidian" and fractal bodies: in order to measure the length of a straight line with an item 
(e.g. a ruler) that is only half as long as the line, the item will have to be applied twice (three 
times respectively if the ruler is only a third as long as the line, etc.). In order to determine the 
area of a square with a side length of k by using a square with a side length of k/2, one would 
need four such squares to cover the whole area of the former square. Applying the same prin-
ciple in order to determine the volume of a cube with a side length of k by smaller cubes with 
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a side length of k/2, one would need eight such cubes to "fill" the original cube. If the side 
length of the "measuring" items were k/3, one would need nine squares and twenty-seven 
cubes respectively. 
 
So if the length (or side length) of the original form is x times the length (or side length) of 
the "measuring" item, one needs x1 items to measure length, x2 items to measure area, and x3 
items to measure volume. The exponent thus always corresponds to the dimensionality of the 
object in question. However, this is not the case for a fractal, as Mandelbrot has shown by 
using the example of a coastline. 
 
If one measures the length of a coastline with a "long ruler" (e.g. one that spans the beeline 
between two points A and B on the coastline that are far apart), then breaks the ruler into x 
smaller pieces and measures the length of the coastline (not the beeline distance between the 
two points) again, starting from A, one will "run out of ruler" way before point B is reached, 
due to the complex structure of the coastline that "unfolds" as the ruler pieces used to measure 
the length of the coastline become shorter. The number of pieces necessary to measure the 
length of the coastline is therefore larger than x, but remains smaller than x2. The dimension-
ality of the coastline is therefore higher than that of a straight line but lower than that of an 
area (and therefore obviously not an integer number). The more complex and jagged the 
coastline, the higher its dimensionality. Put in a very simplified way, whenever a form has a 
higher dimensionality than would be expected and its dimensionality is not an integer number, 
it is a fractal. 
 
Several methods have been proposed to determine the fractal dimension of a time series. The 
most common one, also used in this text, is the Correlation Dimension D2 (Grassberger et al., 
1983a, b). Besides requiring a time series with as many sampling points as possible (about 
1.000 sampling points are generally regarded as a small yet sufficient number for attractors of 
a low fractal dimension), another feature of the Correlation Dimension is that it aims at gener-
ating a representation of an attractor in phase space. Two problems arise: first, it is rarely 
known at the outset how many factors influence the system's dynamics, i.e. how many dimen-
sions are needed for proper representation; second, the whole phase space has to be recon-
structed based on single time series (in most cases just one time series). 
 
As to the first problem, a rule-of-thumb says that the number of the phase space's dimensions 
should at least be equal to the fractal dimension of the attractor rounded up to the next integer 
number. Although the fractal dimension of the attractor is unknown at the outset, it can be 
determined by a recursive algorithm due to the fact that the fractal dimension remains con-
stant if the attractor is embedded in a phase space with too many dimensions. Put differently 
(and simplifying a bit), calculating the fractal dimension for a two-dimensional phase space, 
then for a three-dimensional phase space, and so on, will result in increasing values for the 
fractal dimension of the attractor until the dimensionality of the phase space is higher than 
that of the attractor. However, this saturation on a finite value will only occur if the attractor 
is indeed a fractal. If one applies the same method to a random process, saturation is never 
reached. 
 
A solution for the second problem is provided, for instance, by Packard and Takens (cf. 
Packard, Crutchfield, Farmer, & Shaw, 1980; Takens, 1981), who proposed a theorem accord-
ing to which the whole phase space of a dynamic system can be reconstructed via a single 
time series. Simply spoken, their method is based on choosing a constant time lag (this 
method is therefore known as time lag reconstruction) that determines to which dimension 
each sampling point is assigned. The value of the first sampling point of the time series is 
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assigned to the first dimension of the phase space. The value of the sampling point after one 
times the time lag is assigned to the second dimension, the value of the sampling point after 
two times the time lag is assigned to the third dimension, and so on. If the time lag is well 
chosen, the reconstructed attractor in phase space is topologically equivalent to the attractor of 
the underlying system. Several methods have been proposed that serve to find an appropriate 
time lag for the reconstruction of the attractor (cf. Buzug & Pfister, 1992; Frazer & Swinney, 
1986; Liebert & Schuster, 1989; Schuster, 1989b; Tsonis, 1992; Tsonis & Elsner, 1988; Wolf 
et al., 1985). 
 
For the dynamic system entered into the analyses, two mutually independent time series for 
both coupling and configuration have been recorded. Adding up the measurement readings for 
both dimensions alternately (t0-coupling, t0-configuration, t1-coupling, t1-configuration, ...) 
results in a quasi-time series which is twice as long as the original time series (resulting in 
2.470 sampling points for the 70s cohort and 3.120 sampling points for the 90s cohort), and 
has a known time lag of 1. 
 
One crucial element for determining the fractal dimension within the computational frame-
work chosen here is the so-called correlation integral (cf. Grassberger et al., 1983a, b): 
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the correlation integral can be written like the following: 
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with Θ  being a Heaviside-function assuming the value 1 if dij  is smaller than l and assuming 
the value 0 if this is not the case. Therefore, for a given embedding of a time series with time 
lag coordinates and a certain time lag in m-dimensional space, the correlation integral counts 
all distances between all possible pairs of points within the given space that are smaller than 
the value l and divides this number by the overall number of possible distances. 
 
This equation can be quite easily implemented into a software algorithm that calculates the 
distances between all points for each point and sorts them in ascending order. The position of 
a chosen l dij=  in that list then immediately indicates how many distances between points dij  
are smaller than l. If this number is then divided by n2, C(l) is easily calculated for all l. 
 
The Correlation Dimension D2 can now be represented by the ascending slope of a straight 
line when plotting log(C(l)) against log(l). However, this straight line can only be identified 
for a limited range of the plot (the so-called scaling range), which is a quite serious drawback 
of this method (see Figure 13). The scaling range is frequently assessed by visual judgment, 
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but this would have been too laborious here given the number of data sets analyzed. Instead, 
an automated algorithm was used to determine the scaling range (best least square approxima-
tion to a straight line, cf. Babloyantz & Destexhe, 1987). 
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Figure 13: The Correlation Integral in Dependency on log(l) 

If the scale range can be determined, the slope of the straight line can be regarded as a good 
estimate for the Correlation Dimension. In some cases the scaling range and/or the slope can-
not be determined due to noisy data or a badly chosen time lag for phase space reconstruction. 
If the slope can be determined, its interpretation as an estimate for D2 requires that the value 
for the appropriate embedding dimension be known. As this is usually not the case for empiri-
cal data, the determination of D2 must be executed for different embedding dimensions m 
with m = 1, 2, 3, 4, ..., M (see above). 
 
Ideally, plotting D2 against the embedding dimension m yields a logarithmic curve, i.e. in the 
beginning D2 increases alongside with m, until saturation is reached and D2 does not increase 
anymore, even if m is further increased. The shape and goodness-of-fit of the curve can be 
examined via logarithmic correlation coefficients. In this paper, saturation is determined by 
means of linear regression over the D2 values for the highest embedding dimensions. If the 
slope of the regression line exceeds a limit of 0.07 D2 per embedding dimension, saturation 
cannot be assumed. 
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